Synthesis of Transannular- and Spiro-Substituted Cyclotriphosphazenes: X-ray Crystal Structures of $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)], 1,3-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)],$ $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$, and $1,3-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$

Harry R. Allcock,* Michael L. Turner, and Karyn B. Visscher

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received June 17, 1992

A cyclic triphosphazene with four trifluoroethoxy side groups and two nongeminal chlorine atoms, 1,3-[N₃P₃(OCH₂-CF₃)₄Cl₂, reacts with difunctional alcohols or amines to give transannular derivatives. Examples of the difunctional reagents used include catechol, 2,2'-biphenol, 1,8-dihydroxynaphthalene, 1,8-diaminonaphthalene, 1,3-propanediol, 1,3-diaminopropane, and 2,2'-dilithiobiphenyl. These are the first examples of transannular-bridged structures derived from aromatic diols or diamines. The analogous spirocyclic derivatives were prepared directly from hexachlorocyclotriphosphazene via a simple two-step reaction pathway using the same difunctional reagents. The solid-state structures of 1,1- and 1,3- $[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ and 1,1- and 1,3- $[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ were determined by X-ray diffraction, and the effects of transannular versus spiro substitution on the planarity of the phosphazene ring and (by implication) on the phosphazene ring strain were studied. These compounds are starting materials for phosphazene ring-expansion or ring-opening polymerization reactions.

Introduction

The reactions of difunctional nucleophiles with cyclic halogenophosphazenes can, in principle, yield three types of products (Scheme I). First, halogen replacement could lead to a linkage of phosphazene rings to form cyclolinear or cyclomatrix polymers. Second, the dinucleophile may replace two chlorine atoms at the same phosphorus atom to form spirocyclic structures. And third, the possibility exists that chlorine units on different phosphorus atoms are replaced to give a transannular-bridged structure.

In earlier reports1-7 we described the first examples of spirocyclic phosphazenes, formed by the reactions of hexachlorocyclotriphosphazene, (NPCl₂)₃, with aromatic diols or a diamine. Several of these products showed interesting solid-state inclusion phenomena, and this behavior has been investigated in some detail.8-16 Since that time a number of research groups have studied the reactions of (NPCl₂)₃ or its derivatives with aliphatic dinucleophiles.¹⁷⁻²⁰ In general, spirocyclic products have been

- Allcock, H. R. J. Am. Chem. Soc. 1964, 86, 2591 (2)
- Allcock, H. R.; Kugel, R. L. Inorg. Chem. 1966, 5, 1016. (3)
- Allcock, H. R.; Kugel, R. L. J. Chem. Soc., Chem. Commun. 1968, 24, (4) 1606.
- (5) Allcock, H. R.; Kugel, R. L. J. Am. Chem. Soc. 1969, 91, 5452.
 (6) Allcock, H. R.; Walsh, E. J. Inorg. Chem. 1971, 10, 1643.
- (7) Allcock, H. R.; Kugel, R. L.; Moore, G. Y. Inorg. Chem. 1975, 14, 2831.
- Allcock, H. R.; Siegel, L. A. J. Am. Chem. Soc. 1964, 86, 5140. Allcock, H. R.; Stein, M. T.; Stanko, J. A. J. Chem. Soc., Chem. Commun. (9)
- 1970, 15, 944 (10) Allcock, H. R.; Stein, M. T. J. Am. Chem. Soc. 1974, 96, 49
- (11) Allcock, H. R.; Stein, M. T.; Bissell, E. C. J. Am. Chem. Soc. 1974, 96, 4795
- (12) Allcock, H. R.; Allen, R. W.; Bissell, E. C.; Smeltz, L. A.; Teeter, M. J. Am. Chem. Soc. 1976, 98, 5120.
- (13) Allcock, H. R.; Ferrar, W. T.; Levin, M. L. Macromolecules 1982, 15, 687.
- (14) Allcock, H. R. In Inclusion Compounds; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Academic Press: New York, 1984; Chapter

- (15) Allcock, H. R.; Levin, M. L. Macromolecules 1985, 18, 1324.
 (16) Allcock, H. R.; Levin, M. L.; Whittle, R. R. Inorg. Chem. 1986, 25, 41.
 (17) de Ruiter, B.; van de Grampel, J.; van Bolhuis, F. J. Chem. Soc., Dalton Trans. 1990, 2303.
- (18) Engelhardt, U.; Diefenbach, U.; Damerius, R. Z. Naturforsch., B 1990, 45.457.
- (19) Deutsch, W. F.; Shaw, R. A. Phosphorus, Sulfur, Silicon 1990, 47, 119.
- (20) Ture, S.; Shaw, R. A. Phosphorus, Sulfur, Silicon 1991, 57, 103.

isolated, although a few examples of transannular bridged structures have also been reported.21-24

However, recent work from our laboratory has shown that dilithioferrocene, dilithioruthenocene, or the dilithio reagent from bis(benzene)chromium react with chloro- or fluorocyclophosphazenes to yield mainly transannular derivatives.²⁵⁻³⁷ These

- (21) Shaw, R. A. Phosphorus, Sulfur, Silicon 1989, 45, 103.
- (22) Chandrasekhar, V.; Muralidhara, M. G. R.; Selvaraj, I. I. Heterocycles 1990. 31. 2231.
- (23) Harris, P. J.; Williams, K. B. Inorg. Chem. 1984, 23, 1495.
- (24) Castera, P.; Faucher, J.-P.; Labarre, J.-F.; Perly, B. J. Mol. Struct. 1987, 160, 365
- (25) Suszko, P. R.; Whittle, R. R.; Allcock, H. R. J. Chem. Soc., Chem. Commun. 1982, 960.
- (26) Allcock, H. R.; Lavin, K. D.; Riding, G. H.; Suszko, P. R.; Whittle, R. R. J. Am. Chem. Soc. 1984, 106, 2337. (27) Allcock, H. R.; Lavin, K. D.; Riding, G. H.; Whittle, R. R. Organo-
- metallics 1984, 3, 663. (28) Allcock, H. R.; Lavin, K. D.; Riding, G. H. Macromolecules 1985, 18,
- 1340. Lavin, K. D.; Riding, G. H.; Parvez, M.; Allcock, H. R. J. Chem. Soc., Chem. Commun. 1986, 117. (29)
- (30) Allcock, H. R.; Riding, G. H.; Lavin, K. D. Macromolecules 1987, 20,
- Allcock, H. R.; Lavin, K. D.; Riding, G. H.; Whittle, R. R.; Parvez, M. (31)Organometallics 1986, 5, 1626.

© 1992 American Chemical Society

⁽¹⁾ Allcock, H. R. J. Am. Chem. Soc. 1963, 85, 4050.

are of special interest because the transannular structures impart considerable strain to the phosphazene ring, and this becomes manifest in severe phosphazene ring puckering and an enhanced tendency for the molecules to undergo phosphazene ring expansion or polymerization. Indeed, the polymerization tendency is so marked that cyclotriphosphazenes of this type (1) uniquely undergo polymerization (for example, to 2) even when all the side groups are organic or organometallic units.²⁵⁻³⁷ This is an important result since it had earlier been assumed that the presence of *P*-halogen side group units was a prerequisite for ring-opening polymerization.³⁸ Moreover, the direct conversion of a fully organo-substituted phosphazene cyclic trimer to a fully organosubstituted high polymer bypasses the need for subsequent macromolecular halogen replacement reactions that are normally needed to ensure that the polymers are hydrolytically stable. Thus, the importance of transannular structures in these compounds extends beyond questions of small-molecule structures and mechanisms.

The possibility of extending this approach to phosphazenes with organic transannular bridges was an appealing prospect. Thus, we have investigated routes to the synthesis of such species via the reactions of difunctional nucleophiles such as catechol, 2,2'-biphenol, 1,8-dihydroxynaphthalene, 1,8-diaminonaphthalene, 1,3-diaminopropane, 1,3-propanediol, and 2,2'-dilithiobiphenyl with organocyclotriphosphazenes that bear two nongeminal chlorine atoms. The preparation of the analogous spirocyclic phosphazenes allowed a comparison to be made of the influence of transannular versus spirocyclic structures on the phosphazene ring and on its ring-expansion or polymerization tendencies.

Thus, the objectives of this work were 3-fold: (1) to develop pathways for the synthesis of cyclotriphosphazenes that bear both transannular organic bridges and trifluoroethoxy cosubstituents, (2) to prepare analogous spiro-substituted cyclic phosphazenes, and (3) to compare and contrast their solid-state and solutionstate structures.

The ring-expansion and polymerization behavior of these species will be reported in a later publication.³⁹

Results and Discussion

Preparation of Transannular-Bridged Cyclotriphosphazenes. The reactions of hexachlorocyclotriphosphazene, (NPCl₂)₃ (3), with difunctional alcohols and amines are dominated by ring closure at one phosphorus atom to give spirocyclic derivatives, with little or no transannular bridge formation. $^{1-16}$ Thus, a general synthetic route to transannular-substituted cyclotriphosphazenes

- (32) Riding, G. H.; Parvez, M.; Allcock, H. R. Organometallics 1986, 5, 2153.
- (33) Saraceno, R. A.; Riding, G. H.; Allcock, H. R.; Ewing, A. G. J. Am. Chem. Soc. 1988, 110, 980.
 (34) Saraceno, R. A.; Riding, G. H.; Allcock, H. R.; Ewing, A. G. J. Am. Chem. Soc. 1988, 110, 7254.
- Manners, I.; Riding, G. H.; Dodge, J. A.; Allcock, H. R. J. Am. Chem. (35)
- Soc. 1989, 111, 3067. (36) Allcock, H. R.; Dodge, J. A.; Manners, I.; Parvez, M.; Riding, G. H.;
- Visscher, K. B. Organometallics 1991, 10, 3098. (37) Allcock, H. R.; Dodge, J. A.; Manners, I. J. Am. Chem. Soc. 1991, 113,
- 9596. Allcock, H. R.; Best, R. J. Can. J. Chem. 1964, 42, 447.
- (39) Allcock, H. R.; Turner, M. L. Macromolecules, in press.

Scheme II

had to be developed starting with a phosphazene cyclic trimer that contained four unreactive side groups plus two chlorine atoms in a cis-nongeminal arrangement. This methodology allowed the preparation of cyclotriphosphazenes with transannular aryloxy substituents that are inaccessible by the direct reaction of 3 with compounds such as biphenols or dihydroxynaphthalenes. The synthetic strategy is outlined in Scheme II, which also illustrates the preparation of the precursor, 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6).⁴⁰

First, (NPCl₂)₃ (3) was treated with 4 equiv of dimethylamine to produce the diorgano-substituted trimer 4, in which the two dimethylamino units were arranged nongeminally. (Two of the four equivalents of dimethylamine served as hydrogen chloride acceptors.) The remaining four chlorine atoms were then replaced by reaction with trifluoroethoxide ion to give 5. Finally, the dimethylamino side groups were removed by treatment with HCl-(g) under pressure. This yielded cyclic trimer 6 in 70% yield [based on $(NPCl_2)_3$ (3)] with a nongeminal arrangement of the two chlorine atoms.⁴⁰ The ratio of cis:trans isomers in 6 was found by integration of the ³¹P NMR spectrum to be approximately 1:1.

Compound 6 was found to react with a number of dihydroxy and diamino nucleophiles, in the presence of a hydrogen chloride acceptor, such as triethylamine, sodium carbonate, or pyridine, to produce the transannular-substituted cyclic triphosphazenes 7-12, as shown in Scheme III. Compounds 8-11 were isolated as crystalline solids, whereas 7 and 12 are colorless liquids. Their molecular structures were studied by ³¹P, ¹H, and ¹³C NMR spectroscopy, mass spectrometry, and elemental analysis, the results of which are collected in Tables I and II. The solid-state structure of cyclic trimers 8 and 9 were determined by X-ray diffraction and are described later.

The reactions of 6 with biphenol or 1,8-dihydroxynaphthalene yielded a second product in addition to the transannular species. These white crystalline solids were isolated in ca. 40% yield after purification by column chromatography and were found to be the monochloro derivatives, $N_3P_3(OCH_2CF_3)_4(OC_{12}H_8OH)Cl$ (13) and $N_3P_3(OCH_2CF_3)_4(OC_{10}H_6OH)Cl$ (14) (see Tables I

and II). The biphenylenehydroxy side group of 13 did not undergo cyclization to produce trimer 8 even after prolonged heating at 110 °C in the presence of excess sodium carbonate. Therefore, it was concluded that cyclic trimers 13 and 14 are generated from the trans isomer of starting material 6, whereas the transannular-

⁽⁴⁰⁾ Allcock, H. R.; Mang, M. N.; McDonnell, G. S.; Parvez, M. Macromolecules 1987, 20, 2060.

Scheme III

substituted trimers 8 and 9 are formed from the cis isomer. Similar products were detected in the VPC-MS and ³¹P NMR spectra of the mixtures produced by reaction of 6 with 1,3-propanediol, 1,8-diaminonaphthalene, and 1,3-diaminopropane. However, in those cases it was not possible to isolate the noncyclized products from these reactions by column chromatography techniques.

In the reaction of 6 with catechol another compound was isolated directly from the reaction mixture. This insoluble white powder was found to be $[P(O_2C_6H_4)_3][Et_3NHCl]$ (15), which has been

reported previously as a product formed during the breakdown of $[NP(O_2C_6H_4)]_3$ in the presence of excess catechol and triethylamine.^{1-7,41} The formation of 15 is very slow under the reaction conditions employed in this work. It is formed from the trans isomer of 6 in the presence of excess catechol and triethylamine. The phosphazene breakdown pathway presumably involves the presence of an intermediate similar to 13 or 14.

The reaction of 6 with the disodium salt of 1,3-propanediol gave a more complex mixture of products than was obtained in the presence of triethylamine. Two fractions were isolated by column chromatography and were identified as an inseparable mixture of 1,3- and 1,1- $[N_3P_3(OCH_2CF_3)_4[O(CH_2)_3O]$ (12 and 20) and a disubstituted product, $1,1-[N_3P_3(OCH_2CF_3)_2]O$ - $(CH_2)_3O_{2}$ (21). The isolation of the two spirocyclic phosphazene trimers was unexpected and must result from a displacement of

(41) Allcock, H. R.; Kugel, R. L.; Moore, G. Y. Inorg. Chem. 1975, 14, 2831.

trifluoroethoxy groups from 6 under the reaction conditions employed. Similar displacements are well-known for the replacement of amino groups during reactions with alkoxides42 and have also been reported during the interaction of poly[bis-(trifluoroethoxy)phosphazene] with alkoxides.^{43,44}

No transannular-substituted cyclic trimers could be isolated from the reaction of 6 with ethylene glycol, either in the presence of triethylamine or in the form of its disodium salt. A similar reaction of 6 with 2,2'-dilithiobiphenyl resulted in the formation of a complex mixture of products which could not be separated by column chromatography, and these were apparently products of a phosphazene ring degradation process.

Preparation of Spirocyclic Phosphazene Trimers. The spirocyclic analogues of cyclic trimers 8-12 were prepared directly from $(NPCl_2)_3$ (3) in a two-step, one-reaction vessel reaction, as shown in Scheme IV. To minimize the formation of products with more than one spirocyclic unit per phosphazene ring, the difunctional reagent was added very slowly and was followed by treatment with an excess of sodium trifluoroethoxide to replace the remaining four chlorine atoms. The resulting spirocyclic phosphazenes 16-20 were isolated as crystalline solids (16-18) or colorless liquids (19 and 20). The characterization data are shown in Tables III and IV.

An aryloxy analogue of 16, in which phenoxy groups are present as cosubstituents instead of trifluoroethoxy units, has recently been reported.⁴⁵ That synthesis involved a two-step route and gave an overall yield of 20% from $(NPCl_2)_3$ (3). A similar synthetic pathway has been described recently for the preparation of $1,1-[N_3P_3(NC_2H_4)_4[NH(CH_2)_3NH]].^{46}$

Preparation of the biphenyl-substituted cyclic trimer 1,1- $[N_3P_3(OCH_2CF_3)_4(C_{12}H_8)]$ (22) was accomplished by a modification of the reaction described in Scheme III. Dilithiobiphenyl, prepared by the direct lithiation of biphenyl with BuⁿLi,⁴⁷ was added to $(NPF_2)_3$ at room temperature, followed by the addition of an excess of sodium trifluoroethoxide. Column chromatography of the reaction mixture gave two products. The minor product was found to be $[N_3P_3(OCH_2CF_3)_5(C_{12}H_9)]$ (23) and

was generated from a small amount of monolithiated biphenyl in the mixture. The major product was the spirocyclic derivative 22, which was isolated in 11% yield as colorless crystals from a solution in dichloromethane-hexane. The hexafluorocyclotriphosphazene employed in this reaction is known to undergo cleaner reactions with organolithium reagents than the analogous chlorosubstituted phosphazene.48

Variation of the ³¹P Chemical Shift with Ring Size. Previous studies have shown that the ³¹P chemical shift of spirocyclic phosphazenes and phosphoranes is dependent on the size of the

- (42) Fincham, J. K.; Parkes, H. G.; Shaw, L. S.; Shaw, R. A. J. Chem. Soc., Dalton Trans. 1988, 1169.
- (43)
- Allcock, H. R.; Moore, G. Y. Macromolecules 1972, 5, 231. Allcock, H. R.; Fitzpatrick, R. J.; Salvati, L. Chem. Mater. 1991, 3, 450. (45) Pelk, R. A.; Brandt, K.; Jedlinski, Z. Phosphorus, Sulfur, Silicon 1990, 47, 375.
- Labarre, J.-F.; Guerch, G.; Sournies, F.; Spreafilo, F.; Filippeschi, S. (46)J. Mol. Struct. 1984, 117, 259
- Neugebauer, W. N.; Kos, A. J.; Schleyer, P. v. R.; J. Organomet. Chem. (47) 1982, 228, 107
- (48) Allcock, H. R.; Desorcie, J. L.; Riding, G. H. Polyhedron 1987, 6, 119.

Table I. Mass Spectral, Analytical, and ³¹P NMR Data for Cyclotriphosphazenes 7-14

		elemental anal. (%) ^a			³¹ P NMR spectral data ^b	
compd	mass spectral data ^a (m/e)	- c	н	N	δ (ppm)	J _{PNP} (Hz)
7	639 (639)	25.83 (26.31)	1.84 (1.89)	6.74 (6.58)	22.03, 20.56	88
8	715 (715)	33.39 (33.57)	2.23 (2.24)	5.83 (5.87)	26.96, 25.61, 22.0	79, 88, 91
9	689 (689)	31.21 (31.37)	2.07 (2.05)	5.94 (6.10)	22.77, 21.22	87
10	687 (687)	31.69 (31.45)	2.35 (2.35)	10.13 (10.19)	26.14, 21.14	70
11	603 (603)	21.98 (21.90)	2.73 (2.67)	11.31 (11.61)	26.96, 20.66	73
12	605 (605)	21.62 (21.95)	2.02 (2.24)	6.90 (7.15)	22.44, 20.43	87
13	751 (751)	32.05 (31.95)	1.94 (2.28)	5.78 (5.59)°	27.17, 14.65, 11.54	84, 89
14	725 (725)	29.96 (29.79)	1.96 (2.08)	5.93 (5.79) ^d	28.02, 15.58, 2.18	89, 93

^a Calculated values in parentheses. ^b Recorded in CDCl₃ at 146 MHz on a Bruker WM 360 NMR spectrometer. ^c Chlorine content found to be 4.91 (4.72). ^d Chlorine content found to be 4.75 (4.89).

Table II.	¹ H and	13C NMR	Data F	lecorded fo	г Сус	lotriphosp	hazenes	7–1	4
-----------	--------------------	---------	--------	-------------	-------	------------	---------	-----	---

compd	¹ H NMR spectral data ^{a} (δ)	¹³ C NMR spectral data ^{<i>a,b</i>} (ppm)
7	7.27-6.99 (m, Ph, 4 H), 4.52 (m, OCH_2CF_3 , 4 H), 4.32 (p, $J = 7$, OCH_2CF_3 , 2 H), 4.13 (p, $J = 7$, OCH_2CF_3 , 2 H)	142.8 (s), 126.6 (s), 122.8 (s), 122.0 (m, CF ₃), 63.8 (q, $J = 39$, OCH ₂ CF ₃), 63.2 (q, $J = 39$, OCH ₂ CF ₃), 62.5 (dq, $J = 3$, 39, OCH ₂ CF ₃)
8	7.61–7.16 (m, Ph, 8 H), 4.72 (m, OCH ₂ CF ₃ , 4 H), 4.54 (m, OCH ₂ CF ₃ , 2 H), 3.81 (m, OCH <i>H</i> CF ₃ , 1 H), 3.25 (m, OCH <i>H</i> CF ₃ , 1 H)	150.58 (d, $J = 7$), 148.55 (d, $J = 6$), 133.50 (d, $J = 2$), 132.92 (d, $J = 1$), 132.76 (d, $J = 4$), 132.05 (d, $J = 4$), 131.05 (d, $J = 3$), 130.86 (d, $J = 2$), 127.02 (d, $J = 2$), 126.49 (d, $J = 2$), 126.28 (d, $J = 4$), 121.96 (d, $J = 2$), 123.90 (m, CF ₃), 64.09 (dq, $J = 4$, 37, OCH ₂ CF ₃), 64.44 (dq, $J = 4$, 37, OCH ₂ CF ₃), 63.64 (dq, $J = 3$, 37, OCH ₂ CF ₃), 62.53 (dq, $J = 3$, 38, OCH ₂ CF ₃)
9	7.80 (m, Ph, 2 H), 7.49 (m, Ph, 2 H), 7.33 (m, Ph, 2 H), 4.44 (m, OCH ₂ CF ₃ , 8 H)	144.67 (m), 137.50 (s), 127.42 (s), 126.12 (s), 122.40 (m, $J_{CF} = 277$, CF ₃), 123.14 (s), 120.97 (d, $J = 3$), 64.08 (q, $J = 38$, OCH ₂ CF ₃), 63.32 (dq, $J = 4$, 38, OCH ₂ CF ₃), 62.58 (dq, $J = 3$, 38, OCH ₂ CF ₃)
10	7.78 (m, Ph, 2 H), 7.40 (m, Ph, 2 H), 7.27 (m, Ph, 2 H), 5.26 (s, NH, 2 H), 4.40 (m, OCH ₂ CF ₃ , 4 H), 4.37 (m, OCHHCF ₃ , 1 H), 4.32 (m, OCH ₂ CF ₃ , 2 H), 4.23 (m, OCHHCF ₃ , 1 H)	137.35 (s), 133.04 (d, $J = 2$), 128.80 (s), 128.40 (s), 127.61 (s), 125.59 (s), 122.7 (m, CF ₃ , $J_{CF} = 282$), 62.95 (m, OCH ₂ CF ₃)
11	4.27 (m, OCH ₂ CF ₃ , 8 H), 3.31 (m, NCH ₂ , 2 H), 3.19 (m, NCH ₂ , 2 H), 2.88 (m, NH, 2 H), 1.65 (m, NCH ₂ CHH, 1 H), 1.51 (m, NCH ₂ CHH, 1 H)	122.84 (m, CF ₃), 62.47 (m, OCH ₂ CF ₃), 40.50 (s, NCH ₂), 34.37 (s, NCH ₂ CH ₂)
12	4.37 (m, OCH ₂ , 4 H), 4.33 (m, OCH ₂ CF ₃ , 4 H), 4.26 (m, OCH ₂ CF ₃ , 2 H), 4.15 (m, OCH ₂ CF ₃ , 2 H), 1.75 (m, OCH ₂ CH ₂ , 2 H)	122.43 (m, CF_3 , $J_{CF} = 284$), 66.54 (m, OCH_2), 62.93 (q, $J = 39$, OCH_2CF_3), 62.44 (q, $J = 39$, OCH_2CF_3), 62.53 (q, $J = 38$, OCH_2CF_3), 31.83 (s, OCH_2CH_2)
13	7.47-6.99 (m, Ph, 8 H), 5.13 (s, OH, 1 H), 4.36 (m, OCH ₂ CF ₃ , 2 H), 4.20 (m, OCH ₂ CF ₃ , 2 H), 3.96 (m, OCHHCF ₃ , 1 H), 3.87 (m, OCHHCF ₃ , 1 H), 3.63 (m, OCH ₂ CF ₃ , 2 H)	152.97 (s), 147.58 (s), 132.49 (s), 131.44 (s), 130.20 (d, $J = 5.4$), 130.02 (s), 129.89 (s), 126.77 (s), 123.68 (s), 121.09 (s), 120.59 (s), 116.40 (s), 62.73 (m, OCH ₂ CF ₃)
14	7.63 (m, Ph, 2 H), 7.48 (m, Ph, 2 H), 7.10 (m, Ph, 2 H), 6.6 (br, s, OH, 1 H), 4.38 (m, OCH ₂ CF ₃ , 8 H)	146.38 (d, $J = 3$), 146.17 (d, $J = 3$), 135.07 (s), 127.66 (s), 123.40 (s), 123.37 (s), 122.26 (m, $J_{CF} = 275$, CF ₃), 113.53 (d, $J = 12$), 112.63 (s), 112.55 (s), 112.46 (s), 64.08 (q, $J = 38$, OCH ₂ CF ₃), 63.19 (m, OCH ₂ CF ₃)

^a Recorded in CDCL₃ on a Bruker WM 360 NMR spectrometer, coupling constants (J) in Hertz. Abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, Ph = aryl resonances. ^b Spectrometer operating at 90 MHz.

spirocyclic ring.^{49,50} This earlier work indicated that the spirocyclic phosphorus nuclei are deshielded in the order 6-membered > 7-membered > 5-membered rings. The ³¹P NMR spectra recorded for 16 and 17 show an upfield shift from 25.17 to 5.17 ppm (see Table III). The difference in their chemical shifts of 20 ppm is identical to that reported previously for the corresponding spirocyclic phosphoranes.⁵⁰ Similarly, the ³¹P chemical shifts recorded for the alkylenedioxy- and diamino-substituted trimers 18–20 compare favorably with those described previously for spirocyclic phosphazenes.⁵¹

By contrast, no studies of the ring size dependence of the ^{31}P chemical shift for transannular-substituted cyclic phosphazenes have been reported. Our results show that phosphorus nuclei which bear both aryloxy and trifluoroethoxy substituents are progressively deshielded in moving from cyclic trimer 8 to 9 to 7 (see Table I). However, this effect is very small compared to

that recorded for the spirocyclic analogues. Furthermore, the data for 10–12 suggest that the ³¹P chemical shift is essentially independent of the size and nature of the transannular bridge and depends solely on the cosubstituents at each phosphorus atom. Indeed, in this system the presence of an AB₂ spin system, with both chemical shifts in the region of 20 ppm, was indicative of a transannular structure formed by the difunctional reagent.

X-ray Crystal Structures of Transannular- and Spiro-Substituted Phosphazenes. The solid state structures of 8, 9, 16, and 17 have been determined by X-ray crystallography and are shown in Figures 1–4. Crystal data and intensity collection parameters are shown in Table V. Significant bond lengths and angles are listed in Tables VI-IX, and the fractional atomic coordinates are collected in Tables X-XIII.

In the solid state, the phosphazene ring of the transannular biphenylenedioxy derivative 8 adopts a boat conformation in which a nitrogen [N(1)] and a phosphorus atom [P(3)] are below the plane of the other four atoms of the ring. The PNP angle at this nitrogen $[P(1)-N(1)-P(2) = 117.4 (3)^{\circ}]$ is significantly narrower than those at the other two nitrogen atoms $[P(2)-N(2)-P(3) = 119.2 (2)^{\circ}$ and $P(1)-N(3)-P(3) = 120.4 (2)^{\circ}]$. Evidently, the

⁽⁴⁹⁾ Contractor, S. B.; Hursthouse, M. B.; Shaw, L. S.; Shaw, R. A.; Yilmaz, H. Acta Crystallogr. 1985, B41, 122.

⁽⁵⁰⁾ Burton, S. D.; Kumara, Swamy, K. C.; Holmes, J. M.; O'Day, R.; Holmes, R. R. J. Am. Chem. Soc. 1990, 12, 6104.

⁽⁵¹⁾ Allcock, H. R.; Stein, M. T.; Stanko, J. A. J. Am. Chem. Soc. 1971, 93, 3173.

Scheme IV

Table III. Mass Spectral, Analytical, and ³¹P NMR Data for Spiro-Substituted Cyclotriphosphazenes 16-22

			elemental anal. (%) ^a			ctral data ^b
compd	mass spectral data ^a (m/e)	С	Н	N	δ (ppm)	J _{PNP} (Hz)
16	715 (715)	33.46 (33.58)	2.03 (2.25)	5.97 (5.88)	25.17, 18.19	92
17	689 (689)	31.07 (31.37)	2.07 (2.05)	5.94 (6.10)	18.24, 5.17	94
18	687 (687)	31.41 (31.45)	2.06 (2.35)	9.98 (10.19)	18.49, -0.22	79
19	603 (603)	22.00 (21.90)	2.55 (2.67)	11.54 (11.61)	18.50, 18.11	65
20	605 (605)	21.95 (21.83)	2.24 (2.33)	7.15 (6.95)	17.98, 14.30	88
21	481 (481)	24.72 (24.96)	3.39 (3.35)	8.76 (8.73)	18.11, 14.36	86
22	683 (683)	34.90 (35.15)	2.45 (2.36)	5.92 (6.15)	31.45, 18.01	31

^a Calculated values in parentheses. ^b Recorded in CDCl₃ at 146 MHz on a Bruker WM 360 NMR spectrometer.

Table IV. ^H and ¹³C NMR Data Recorded for Spiro-Substituted Cyclotriphosphazenes 16-22

compd	¹ H NMR spectral data ^a (δ)	¹³ C NMR spectral data ^{a,b} (ppm)
16	7.57 (m, Ph, 2 H), 7.48 (m, Ph, 2 H), 7.39 (m, Ph, 2 H), 7.23 (m, Ph, 2 H), 4.35 (m, OCH ₂ CF ₃ , 8 H)	147.67 (d, $J = 9$), 130.0 (s), 129.84 (s), 128.49 (s), 126.5 (s), 122.48 (q, $J_{CF} = 278$, CF ₃), 121.4 (d, $J = 4$), 63.02 (q, $J = 38$, OCH ₂ CF ₃)
17	7.63 (m, Ph, 2 H), 7.48 (m, Ph, 2 H), 7.10 (m, Ph, 2 H), 4.33 (m, OCH ₂ CF ₃ , 8 H)	146.47 (d, $J = 6$), 135.09 (s), 127.65 (s), 123.29 (s), 122.41 (m, $4J_{CF} = 278$, CF ₃), 123.14 (s), 113.7 (d, $J = 13$), 112.42 (d, $J = 9$), 63.06 (q, $J = 38$, OCH ₂ CF ₃)
18	7.29 (m, Ph, 4 H), 6.58 (m, Ph, 2 H), 5.13 (d, $J = 5$, NH, 2 H), 4.33 (ddq, $J = 5$, 8, 17, OCH ₂ CF ₃ , 2 H)	136.61 (s), 135.28 (s), 127.15 (s), 122.62 (m, $J_{CF} = 278$, CF ₃), 120.57 (s), 109.6 (s), 109.48 (s), 62.90 (q, $J = 38$, OCH ₂ CF ₃)
19	4.24 (m, OCH_2CF_3 , 8 Å), 3.29 (dt, $J = 6$, 15, NCH ₂ , 4 H), 2.49 (br, s, NH, 2 H), 1.71 (p, $J = 6$, NCH ₂ CH ₂ , 2 H)	122.67 (m, $J_{CF} = 278$, CF ₃), 62.51 (q, $J = 38$, OCH ₂ CF ₃), 41.03 (s, NCH ₂), 26.21 (s, NCH ₂ CH ₂)
20	4.45 (dt, $J = 6$, 12, OCH ₂ , 4 H), 4.24 (ddq, $J = 4$, 8, 12, OCH ₂ CF ₃ , 8 H), 2.0 (m, OCH ₂ CH ₂ , 2 H)	122.50 (qt, J_{CF} = 278, 6, CF ₃), 67.31 (d, J = 6, OCH ₂ CH ₂) 62.67 (q, J = 38, OCH ₂ CF ₃), 25.81 (d, J = 7, OCH ₂ CH ₂)
21	4.45 (p, $J = 6$, OCH ₂ , 8 H), 4.24 (p $J = 8$, 4 H), 2.02 (dp, $J = 6$, 14, OCH ₂ CHH, 2 H), 1.95 (dp, $J = 6$, 14, OCH ₂ CHH, 2 H)	122.76 (m, J_{CF} = 278, CF ₃), 67.05 (m, OCH ₂), 62.48 (dq, J = 4, 38, OCH ₂ CF ₃), 25.97 (t, J = 3, OCH ₂ CH ₂)
22	7.76 (m, Ph, 2 H), 7.58 (m, Ph, 4 H), 7.46 (m, Ph, 2 H), 4.35 (ddq, $J = 4, 8, 12, OCH_2CF_3, 8 H$)	140.56 (d, $J = 27$), 133.63 (d, $J = 2$), 132.03 (m, $J_{CF} = 141$, CF ₃), 129.77 (d, $J = 12$), 127.36 (d, $J = 10$), 124.18 (t, $J = 7$), 121.22 (d, $J = 6$), 62.93 (q, $J = 37$, OCH ₂ CF ₃)

^a Recorded in CDCl₃ on a Bruker WM 360 NMR spectrometer, coupling constants (J) in Hertz. Abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, Ph = aryl resonances. ^b Spectrometer operating at 90 MHz.

introduction of the transannular biphenylenedioxy moiety leads to a distortion of the phosphazene ring in a manner similar to that found for the transannular ferrocenyl group in 1. However, the effect is more pronounced for the transannular ferrocenyl derivative, where a PNP angle of 112° was found for the trifluoroethoxy derivative 1 ($M = Fe, R = OCH_2CF_3$).³⁶ This large deviation from the favored angle at nitrogen (120°) has been used to explain why fully organo-substituted cyclic trimers, such as 1, can be induced to undergo facile ring-opening polymerization in the presence of an initiator.^{25,26} The phenyl rings of the bridging biphenylenedioxy group in 8 are arranged at ca. 90° [C(11)–C(16)–C(36)–C(31) torsion angle = $87.1(6)^{\circ}$], presumably to avoid 6,6', hydrogen-hydrogen interactions. This indicates that the "bite angle" of the 2,2'-biphenol is large enough to bridge the PN ring easily in a transannular fashion.

The X-ray diffraction study of the spirocyclic 1,1- $[N_3P_3(OCH_2-CF_3)_4(O_2C_{12}H_8)]$ (16) (see Figure 3) revealed a planar phosphorus-nitrogen ring (to within ±0.008 Å), without the distortion apparent for the transannular analogue (8). The angles at the ring nitrogen atoms are all equal [e.g. P(1)-N(1)-P(2) = 122.1

Figure 1. X-ray crystal structure of $1,3-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ (8).

Figure 2. X-ray crystal structure of $1,3-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (9).

(2)°, P(2)-N(2)-P(3) = 122.8 (3)°, and P(1)-N(3)-P(3) = 122.3 (2)°] and are significantly wider than those in the transannular derivative 8. This reinforces the view that the transannular biphenylenedioxy group of 8 produces the compression of the PNP angle at N(1) that results in distortion of the phosphazene ring. The biphenylenedioxy group of 16 adopts a twisted conformation, with a C(11)-C(16)-C(26)-C(21) torsion angle of 44.0 (1)°. This compares favorably with values reported for (biphenylene-2,2'-dioxy)tris(2,6-dimethylphenoxy)phosphorane of 35.6° 50 and for tris(biphenylene-2,2'-dioxy)cyclotriphosphazene of 41°.51

The solid-state structure of the transannular naphthylenedioxy compound 1,3- $[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (9) (see Figure 2) shows a greater distortion of the phosphazene ring than found for 8, with a nitrogen atom [N(1)] located 0.635 Å below the plane of the other five atoms of the phosphazene ring (which are coplanar to within ±0.020 Å). The angle at this nitrogen $[P(1)-N(1)-P(2) = 109.5 (3)^{\circ}]$ is the narrowest PNP angle yet found for a cyclotriphosphazene and is significantly narrower than that reported for the biphenylenedioxy derivative 8 $[P(1)-N(1)-P(2) = 117.4 (3)^{\circ}]$. The conformation of the phosphazene ring is identical to that reported for the ferrocenyl-trifluoroethoxy derivative 1 (M = Fe, R = OCH₂CF₃).³⁶ The bridging naphthylenedioxy group is bent away from the syn-transannular

Figure 3. X-ray crystal structure of $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ (16).

Figure 4. X-ray crystal structure of $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (17).

trifluoroethoxy group [i.e. coordinated via O(5)]. This results in a dihedral angle of 38.6° between the planes formed by the five coplanar atoms of the naphthalenedioxy group [O(1)-C(1)-C(9)-C(8)-O(3)] and P(1)-O(1)-O(3)-P(2). This angle is similar to those reported for the spirocyclic naphthylenedioxy groups of [(naphthylene-1,8-dioxy)tris(2,6-dimethylphenoxy)phosphorane]⁵⁰ and [tris(naphthylene-1,8-dioxy)cyclotriphosphazene] (24)⁵² of 31.5 and 36°, respectively (also see later for 17). Furthermore, the P(1)-O(1)-C(1) and P(2)-O(3)-C(8)

Table V.	Summary of	Crystal	Data and	Intensity	Collection	Parameters
----------	------------	---------	----------	-----------	------------	------------

	•	8		9	16		17
formula		P3N3O6C20F12H16]	P3N3O6C18F12H14	P3N3O6C20F12H	I16 P2N	
fw		715	ĺ	688	715	688	10- 1214
cryst size		$0.6 \times 0.75 \times 0.5$	($0.6 \times 0.85 \times 0.6$	$0.6 \times 0.45 \times 0.5$	5 0.7 >	< 0.95 × 0.8
space group		PĪ	i	PĨ	$P2_1/a$	P 2 ₁	
cryst system		triclinic	t	triclinic	monoclinic	mon	oclinic
a (Å)		11.369 (2)		10.589 (4)	10.394 (2)	11.2	3 (1)
b (Å)		11.433 (4)		14.57 (1)	33.002 (8)	9.29	(3)
c (Å)		12.832 (3)	9	9.11 (1)	8.354 (2)	13.0	7 (1)
α (deg)		68.88 (2)	9	97.3 (1)			
β (deg)		72.02 (1)]	108.60 (5)	79.13 (2)	103.	57 (9)
γ (deg)		78.91 (2)	9	96.72 (7)			
V, (A ³)		1421.91]	1303.0	2814.7	1326	5.0
Z		2	4	2	4	2	6
$a(caica) (g/cm^3)$		1.0/1	1	1.077	1.000	1.72	5
o finits (deg)		2-23	4	2-25	2-23	2-23	,
μ (cm ⁻¹) rediction () (Å))		$M_0 K \sim (0.710.73)$	1	$M_{0} K_{\alpha} (0.710.73)$	$M_0 K_{\alpha} (0.710.5)$	2.00 (3) Mol	K~ (0 710 73)
$T(\mathbf{K})$		203	1	10 Ka (0.710 75)	203	202	Ku (0./10/5)
scan method		w/20	4	w/20	$\omega/2\theta$	w/26	1
w-scan width		$(1.00 \pm 0.35 \tan \theta)$		$(1.00 \pm 0.35 \tan \theta)$	$(1.00 \pm 0.35 tar$	ιθ) (100	$() + 0.35 \tan \theta$
cryst decay (%)		1.9	, t	none	3.8	0.5	,
empirical abs cor			-		•••		
min cor factor		0.9744	(0.9076	0.9816	0.31	85
max cor factor		0.9996	(0.9985	0.9994	0.99	84
no. of unique data u	ised	5001	:	5859	5056	4079)
no. of data used [12	> 3σ(I)]	5001		3427	3537	3637	1
data:param ratio		11	9	9	8	10	
$R, R_{\rm w} = (\Sigma \Delta^2 / \Sigma w R)$	$(7_0^2)^{1/2}$	0.072, 0.075	(0.079, 0.079	0.064, 0.105	0.05	3, 0.053
$(\Delta/\sigma)_{max}$ in last cyc	le	0.03	(0.06	0.14	0.00	8
$\Delta \rho$ in final ΔF map	(e Å ⁻³)	0.898	(0.797	0.909	0.42	3
p (weighting factor))	0.05	(0.05	0.08	0.05	_
error in weights		1.32	1	1.70	2.272	1.12	/
Table VI. Selected In 1,3-[N ₃ P ₃ (OCH ₂ CF ₃) ₄	ternuclear D (O ₂ C ₁₂ H ₈)]	Distances (Å) and Angle (8)	s (deg) fo:	Table VII. Selector for 1,3-[N ₃ P ₃ (OCH	ed Internuclear $H_2CF_3)_4(O_2C_{10}H_3)_4(O$	Distances (Å) an [₆)] (9)	d Angles (deg)
P(1) = O(1)	1.601 (4)	C(11) - C(12)	1.391 (6)	P(1) - O(1)	1,597 (6)	O(3) - C(8)	1.408 (7)
P(1) = O(2)	1.574 (3)	C(11) - C(16)	1.380 (6)	P(1) - O(2)	1.560 (5)	C(1) - C(2)	1.385 (9)
P(1) - N(1)	1.577 (3)	C(12) - C(13)	1.389 (9)	P(1) - N(1)	1.566 (6)	C(1)–C(9)	1.402 (10)
P(1) - N(3)	1.592 (3)	C(13) - C(14)	1.361 (8)	$\mathbf{P}(1) - \mathbf{N}(3)$	1.567 (6)	C(2) - C(3)	1.404 (11)
P(2) - O(3)	1.585 (4)	C(14) - C(15)	1.385 (7)	P(2) - O(3)	1.577 (4)	C(3) - C(4)	1.352 (12)
P(2) - O(4)	1.578 (3)	C(15)-C(16)	1.405 (8)	P(2)-O(4)	1.573 (5)	C(4) - C(10)	1.446 (10)
P(2) - N(1)	1.582 (3)	C(16)-C(36)	1.496 (6)	P(2)-N(1)	1.593 (5)	C(5)–C(6)	1.382 (12)
P(2) - N(2)	1.589 (3)	C(31)-C(32)	1.379 (7)	P(2)-N(2)	1.571 (6)	C(5)-C(10)	1.411 (11)
P(3)-O(5)	1.582 (4)	C(31)–C(36)	1.388 (7)	P(3)-O(5)	1.573 (5)	C(6)–C(7)	1.415 (11)
P(3)-O(6)	1.587 (3)	C(32)-C(33)	1.392 (7)	P(3)-O(6)	1.579 (5)	C(7)–C(8)	1.360 (9)
P(3) - N(2)	1.576 (3)	C(33)-C(34)	1.37 (1)	P(3)-N(2)	1.562 (6)	C(8)–C(9)	1.437 (9)
P(3) - N(3)	1.579 (4)	C(34)–C(35)	1.393 (8)	P(3) - N(3)	1.602 (5)	C(9)–C(10)	1.438 (9)
O(1)-C(11)	1.415 (6)	C(35)–C(36)	1.399 (7)	O(1)-C(1)	1.398 (8)		
O(3) - C(31)	1.404 (5)			O(1) - P(1) - O(2)	103.9 (3)	C(2) - C(1) - C(9)) 123.9 (7)
O(1) = P(1) = O(2)	99.9 (2)	C(11)-C(12)-C(13)	119.8 (5)	O(1) - P(1) - N(1)	108.9 (3)	C(1) - C(2) - C(3)	118.9(8)
O(1)-P(1)-N(1)	111.2(2)	C(12)-C(13)-C(14)	118.6 (5)	O(1) - P(1) - N(3)	106.8 (3)	C(2) - C(3) - C(4)	120.8(7)
O(1) - P(1) - N(3)	109.9 (3)	C(13) - C(14) - C(15)	121.9 (6)	N(1) - P(1) - N(3)	117.3 (3)	C(3) - C(4) - C(1)	() 121.0 (7)
N(1) - P(1) - N(3)	116.8 (2)	C(14) - C(15) - C(16)	120.6 (5)	O(3) - P(2) - O(4)	103.0 (3)	C(10) - C(5) - C(5)	6) 120.8 (8)
O(3) - P(2) - O(4)	101.0 (2)	C(11) - C(16) - C(15)	116.8 (4)	O(3) - P(2) - N(1)	109.6 (3)	C(5)-C(6)-C(7) 119.9 (8)
O(3)-P(2)-N(1)	110.6 (3)	C(11)-C(16)-C(36)	123.4 (4)	O(3)-P(2)-N(2)	106.5 (3)	C(6)-C(7)-C(8) 119.2 (8)
O(3)-P(2)-N(2)	107.1 (3)	C(15)-C(16)-C(36)	117.7 (4)	N(1)-P(2)-N(2)	116.3 (3)	C(7)-C(8)-C(9) 124.4 (6)
N(1)-P(2)-N(2)	117.2 (2)	O(3)-C(31)-C(32)	118.4 (5)	N(2)-P(3)-N(3)	117.7 (3)	O(3) - C(8) - C(7)) 114.9 (6)
N(2)-P(3)-N(3)	117.8 (2)	O(3)-C(31)-C(36)	118.5 (3)	P(1)-O(1)-C(1)	121.8 (4)	O(3)-C(8)-C(9) 120.6 (6)
P(1)-O(1)-C(11)	121.3 (3)	C(32)-C(31)-C(36)	123.2 (5)	P(1) - O(3) - C(8)	122.0 (4)	C(1)-C(9)-C(8) 129.2 (6)
P(1) = O(3) = C(31)	119.0 (3)	C(31)-C(32)-C(33)	118.5 (6)	P(1) - N(1) - P(2)	109.5 (3)	C(1) - C(9) - C(1)	0) 116.2 (6)
P(1) = N(1) = P(2)	117.4 (3)	C(32) = C(33) = C(34)	120.4 (5)	P(2) = N(2) = P(3)	119.8 (3)	C(4) = C(9) = C(1)	U) 114.6 (6)
r(2) = IN(2) = I'(3) P(1) = N(2) = P(2)	119.2 (2)	C(33) = C(34) = C(35) C(34) = C(35) = C(35)	120.0 (3)	r(1) - N(3) - r(3)	117.0 (4)	C(4) = C(10)	J) 119.0(/) 0) 110.0(7)
O(1) = C(11) = C(12)	116.1 (4)	C(16) - C(36) - C(30)	124 0 (4)	O(1) - C(1) - C(2)	122.1 (6)	C(5) = C(10) = C(10)	9) 1212(7)
O(1)-C(11)-C(16)	121.6 (4)	C(16) - C(36) - C(35)	119.0 (5)		122.1 (0)		-, 121.2(1)
C(12)-C(11)-C(16)	122.3 (6)	C(31)-C(36)-C(35)	116.9 (4)	An X-ray diffi	raction study of	of the spirocycl	ic analogue 1,1-
, . ,	. /		. ,	[N ₃ P ₃ (OCH ₂ CF ₃	$(O_2C_{10}H_6)$	(17) (see Figure	e 4) shows only a

angles of 121.8 (4) and 122.0 (4) $^{\circ}$ are identical to those previously reported for 24⁵² and other aryloxy-containing phosphazenes.^{53,54}

- (52) Allcock, H. R.; Stein, M. T.; Bissell, E. C. J. Am. Chem. Soc. 1974, 96, 4795.
- (53) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic Press: New York, 1972. Allen, C. W. In The Chemistry of Inorganic Homo and Heterocycles; Haiduc, I., Sowerby, D. B., Eds.; Academic Press: London, 1987.

slight distortion of the phosphazene ring, with N(1) and P(3)

slightly above the plane of the other four atoms of the ring [0.013] and 0.073 Å, respectively]. This distortion is similar to that reported for 24 in which the phosphazene ring also adopts a boat

conformation.52 However, the distortion is very small when

compared to that found for 9. Furthermore, the PNP angles at

⁽⁵⁴⁾ Schmutzler, R. Inorg. Synth. 1967, 9, 75.

Table VIII. Selected Internuclear Distances (Å) and Angles (deg) for $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ (16)

P(1)-O(1)	1.589 (3)	C(11) - C(12)	1.375 (8)
P(1) - O(2)	1.584 (3)	C(11) - C(16)	1.394 (8)
P(1) - N(1)	1.582 (4)	C(12) - C(13)	1.420 (9)
P(1) - N(3)	1.569 (4)	C(13) - C(14)	1.370 (9)
P(2) - O(3)	1.569 (4)	C(14) - C(15)	1.386 (8)
P(2) - O(4)	1.579 (3)	C(15) - C(16)	1.432 (7)
P(2) - N(1)	1.573 (4)	C(16)-C(26)	1.461 (7)
P(2) - N(2)	1.581 (4)	C(21)-C(22)	1.386 (8)
P(3)-O(5)	1.570 (4)	C(21)-C(26)	1.385 (7)
P(3)-O(6)	1.585 (3)	C(22)C(23)	1.389 (8)
P(3) - N(2)	1.567 (4)	C(23)-C(24)	1.410 (9)
P(3) - N(3)	1.592 (4)	C(24)C(25)	1.358 (9)
O(1)-C(11)	1.397 (5)	C(25)-C(26)	1.394 (8)
O(2)-C(21)	1.419 (5)		
O(1)-P(1)-O(2)	103.1 (2)	C(12)-C(13)-C(14)	119.4 (6)
O(1) - P(1) - N(1)	111.9 (2)	C(13)-C(14)-C(15)	121.6 (5)
O(1) - P(1) - N(3)	105.2 (2)	C(14)-C(15)-C(16)	120.6 (5)
O(2) - P(1) - N(1)	105.3 (2)	C(11)-C(16)-C(15)	116.1 (5)
O(2) - P(1) - N(3)	112.7 (2)	C(11)-C(16)-C(26)	123.4 (4)
N(1)-P(1)-N(3)	117. 9 (3)	C(15)-C(16)-C(26)	120.4 (5)
N(1)-P(2)-N(2)	117.2 (2)	O(2)-C(21)-C(22)	116.7 (4)
N(2)-P(3)-N(3)	117.1 (3)	O(2)-C(21)-C(26)	119.1 (5)
P(1)-O(1)-C(11)	120.6 (2)	C(22)-C(21)-C(26)	124.1 (4)
P(1)-O(2)-C(21)	122.4 (2)	C(21)-C(22)-C(23)	118.2 (5)
P(1)-N(1)-P(2)	122.1 (2)	C(22)-C(23)-C(24)	119.5 (6)
P(2)-N(2)-P(3)	122.8 (3)	C(23)-C(24)-C(25)	119.6 (5)
P(1)-N(3)-P(3)	122.3 (2)	C(24)-C(25)-C(26)	123.3 (5)
O(1)-C(11)-C(12)	117.5 (4)	C(16)-C(26)-C(21)	121.6 (4)
O(1)-C(11)-C(16)	118.7 (4)	C(16)-C(26)-C(25)	123.1 (5)
C(12)-C(11)-C(16)	123.8 (5)	C(21)-C(26)-C(25)	115.4 (5)
C(11)-C(12)-C(13)	118.6 (5)		

Table IX. Selected Internuclear Distances (Å) and Angles (deg) for $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)$ (17)

	/4(************************************	· · /	
P(1)-O(1)	1.580 (4)	O(2)-C(8)	1.418 (7)
P(1)-O(2)	1.606 (4)	C(1)-C(2)	1.386 (9)
P(1) - N(1)	1.573 (5)	C(1)-C(9)	1.407 (8)
P(1) - N(3)	1.585 (5)	C(2)-C(3)	1.410 (10)
P(2)-O(3)	1.596 (4)	C(3)-C(4)	1.359 (12)
P(2)-O(4)	1.577 (4)	C(4) - C(10)	1.456 (11)
P(2) - N(1)	1.581 (5)	C(5)-C(10)	1.434 (10)
P(2) - N(2)	1.592 (5)	C(5)-C(6)	1.376 (12)
P(3)-O(5)	1.589 (5)	C(6)-C(7)	1.450 (10)
P(3)-O(6)	1.578 (4)	C(7)–C(8)	1.397 (9)
P(3) - N(2)	1.567 (5)	C(8)-C(9)	1.386 (9)
P(3) - N(3)	1.568 (5)	C(9) - C(10)	1.403 (7)
O(1)-C(1)	1.402 (7)		
O(1)-P(1)-O(2)	103.7 (2)	C(1)-C(2)-C(3)	119.4 (7)
O(1) - P(1) - N(1)	106.5 (3)	C(2)-C(3)-C(4)	117.6 (7)
O(1) - P(1) - N(3)	110.6 (2)	C(3)-C(4)-C(10)	124.5 (6)
O(2) - P(1) - N(1)	106.6 (3)	C(10)-C(5)-C(6)	120.8 (6)
O(2)-P(1)-N(3)	109.7 (3)	C(5)-C(6)-C(7)	122.7 (7)
N(1)-P(1)-N(3)	118.6 (3)	C(6)-C(7)-C(8)	113.1 (7)
N(1)-P(2)-N(2)	118.2 (2)	C(7)-C(8)-C(9)	126.6 (6)
N(2)-P(3)-N(3)	118.3 (3)	O(2)-C(8)-C(7)	113.4 (6)
P(1)-O(1)-C(11)	120.2 (4)	O(2) - C(8) - C(9)	120.0 (5)
P(1)-O(2)-C(21)	119.4 (4)	C(1)-C(9)-C(8)	123.2 (5)
P(1)-N(1)-P(2)	120.9 (3)	C(1)-C(9)-C(10)	118.1 (6)
P(2)-N(2)-P(3)	121.7 (3)	C(8)-C(9)-C(10)	118.7 (6)
P(1)-N(3)-P(3)	121.2 (3)	C(4)-C(10)-C(5)	125.2 (6)
O(1)-C(1)-C(2)	117.6 (6)	C(4)-C(10)-C(9)	116.7 (6)
O(1)-C(1)-C(9)	118.7 (5)	C(5)-C(10)-C(9)	118.1 (6)
C(2)-C(1)-C(9)	123.6 (6)		

the ring nitrogen atoms are all equal [P(1)-N(1)-P(2) = 120.9(3)°, P(2)-N(2)-P(3) = 121.7 (3)°, and P(1)-N(3)-P(3) = 121.2 (3)°] and are significantly wider than at nitrogen atom N(1) in cyclic trimer 9 [P(1)-N(1)-P(2) = 109.5 (3)°]. The naphthylenedioxy group is bent at the oxygen atoms O(1) and O(2) in a manner similar to the arrangement in cyclic trimers 9 and 24,⁵² with a dihedral angle of 33 (2)° between the planes formed by O(1)-C(1)-C(9)-C(8)-O(2) (coplanar to within ±0.05 (3) Å) and O(1)-P(1)-O(2). Alternatively, the phosphorus atom [P(1)]

Table X. Atomic Positional Parameters for 8 with Esd's in Parentheses

arentheses			
atom	x	у	z
P(1)	0.2674 (1)	0.3107 (1)	0.67395 (9)
P(2)	0.5106 (1)	0.2416(1)	0.60988 (9)
P(3)	0.3717 (1)	0.0936 (1)	0.8310 (1)
F(21)	-0.0927 (3)	0.5400 (3)	0.8447 (4)
F(22)	0.0536 (5)	0.6505 (4)	0.7043 (5)
F(23)	0.0856 (5)	0.5351 (4)	0.8656 (4)
F(41)	0.8050 (3)	0.1953 (4)	0.7104(4)
F(42)	0.8738 (3)	0.3500 (5)	0.5472 (4)
F(43)	0.8152 (3)	0.3803 (4)	0.7094 (3)
F(51)	0.1908 (5)	0.1517 (4)	0.1946(3)
F(52)	0.3672 (5)	0.2267 (4)	0.0908 (4)
F(53)	0.2209 (6)	0.2843 (4)	0.0088(4)
F(61)	0.1560 (5)	0.7454 (4)	0.8803 (4)
F(62)	0.1130 (5)	-0.1340 (6)	0.9724 (6)
F(63)	0.2423(6)	-0.2925(5)	1.0190 (5)
$\mathbf{O}(1)$	0.1934(3)	0.3092(3)	0.5868 (2)
O(2)	0.1953 (3)	0.4302(3)	0.7014(3)
Õ(3)	0.5259(3)	0.1915(3)	0.5089 (2)
0(4)	0.6395 (3)	0.3017(3)	0.5693(2)
0(5)	0.3934(3)	0.3017(3)	0.9409(3)
0(6)	0.3446(3)	-0.0564(3)	0.8929 (3)
N(1)	0.0440 (0)	0.3535(3)	0.6032(3)
N(2)	0.4005 (3)	0.1166 (4)	0.0032(3)
N(2)	0.2533 (3)	0.1700(4)	0.7909 (3)
C(11)	0.2000(0)	0.1983(4)	0.7505(3)
C(12)	0.2010(4)	0.1133(4)	0.5022(4)
C(12)	0.1094(4)	0.0114(5)	0.0330(4)
C(13)	0.1066 (5)	-0.0147(5)	0.0110(5)
C(14)	0.1904 (5)	-0.0147(5)	0.3200(3)
C(15)	0.2880(5)	0.0719(3) 0.1823(4)	0.4481(4)
C(10)	0.2920(4)	0.1823(4)	0.7501 (5)
C(21)	0.0008 (5)	0.4201(5)	0.7391(5)
C(22)	0.0233(3)	0.3401(3)	0.7883(3)
C(31)	0.5001(4)	0.2797(4) 0.3617(5)	0.3334(4)
C(32)	0.3901(3)	0.3017(3)	0.3140(4)
C(33)	0.3002(7)	0.4407 (0)	0.2040(5)
C(34)	0.4557(7)	0.3470 (0)	0.1813(3)
C(33)	0.3002(3)	0.3036(3)	0.2070(4)
C(30)	0.3000(4)	0.2775(4)	0.3807(4)
C(41)	0.0007(4)	0.3038 (4)	0.0334(4)
C(42)	0.2125(5) 0.2042(5)	0.0711 (6)	1.0520(4)
C(51)	0.3042(3)	0.0711(3)	1.0337 (4)
C(52)	0.2087 (7)	0.1348 (0)	1.0803 (3)
C(61)	0.3025 (0)	-0.1130 (3)	0.8341(3) 0.0378(7)
C(02)	0.2037 (8)	0.0000(7)	0.5210(1)

is displaced from the O(1)–C(1)–C(9)–C(8)–O(2) plane by 0.517 (4) Å.

These X-ray crystallographic results show that decreasing the "bite angle" of the transannular bridge on moving from a biphenylenedioxy to a naphthylenedioxy group increases the strain in the phosphazene ring, as measured both by the size of the PNP angle at N(1) and its displacement below the phosphazene ring. The conformation of the phosphazene ring is also dependent on the nature of the transannular bridge. Bridges with large "bite angles", such as the biphenylenedioxy group, favor a boat conformation of the phosphazene ring, with a phosphorus and a nitrogen displaced from the ring plane. On the other hand, smaller bridges such as a naphthylenedioxy or a ferrocenyl group, ³⁶ favor a conformation in which only the nitrogen atom N(1) between the transannular bridge is displaced below the plane of the other five atoms of the ring.

Conclusions

A general synthetic route to transannular substituted cyclotriphosphazenes is described. This synthetic route has allowed the preparation of hitherto inaccessible cyclotriphosphazenes with transannular aryloxy substituents. These are not accessible via the direct reaction of $(NPCl_2)_3$ (3) with reagents such as biphenols or dihydroxynaphthalenes. The analogous spirocyclic derivatives can be prepared directly from $[NPCl_2]_3$ (3) in a two-step reaction. The solid-state structures of $1,3-[N_3P_3(OCH_2CF_3)_4\{O_2C_{12}H_8\}]$

Table XI. Atomic Positional Parameters for 9 with Esd's in Parentheses

atom	x	У	Z
P(1)	0.3258 (2)	0.8512(1)	0.3008 (2)
P(2)	0.2103 (2)	0.7067 (1)	0.3317(2)
P(3)	0.4405 (2)	0.6573 (1)	0.2565 (2)
F(21)	0.3852 (10)	1.1283 (6)	0.2254 (9)
F(22)	0.3834 (7)	1.1121 (5)	0.0112 (8)
F(23)	0.2166 (7)	1.1338 (5)	0.0764 (8)
F(41)	-0.1505 (6)	0.5892 (6)	-0.0002 (7)
F(42)	-0.1834 (5)	0.6764 (5)	0.1765 (7)
F(43)	-0.0831 (7)	0.5275 (6)	0.1985 (9)
F(51)	0.3577 (6)	0.6077 (4)	-0.1775 (5)
F(52)	0.4964 (9)	0.6921 (6)	-0.2019 (6)
F(53)	0.3460 (7)	0.7598 (4)	-0.1017 (6)
F(61)	0.7815 (7)	0.6232 (5)	0.6895 (6)
F(62)	0.8212 (6)	0.5363 (7)	0.5115 (8)
F(63)	0.7736 (8)	0.6911 (7)	0.4968 (8)
O (1)	0.3733 (4)	0.8718 (3)	0.4671 (5)
O(2)	0.3033 (6)	0.9578 (4)	0.2328 (6)
O(3)	0.2410 (4)	0.7139 (3)	0.4984 (4)
O(4)	0.0761 (5)	0.6687 (4)	0.2890 (5)
O(5)	0.4455 (5)	0.6102 (3)	0.1067 (5)
O(6)	0.5761 (5)	0.5980 (3)	0.3496 (5)
N(1)	0.1901 (5)	0.8170 (4)	0.2674 (5)
N(2)	0.3239 (6)	0.6240 (4)	0.2970 (6)
N(3)	0.4422 (5)	0.7763 (4)	0.2594 (6)
C(1)	0.2891 (7)	0.9302 (5)	0.5411 (7)
C(2)	0.3088 (8)	1.0288 (5)	0.5679 (8)
C(3)	0.2329 (9)	1.0933 (6)	0.6460 (8)
C(4)	0.1404 (8)	1.0605 (6)	0.6924 (8)
C(5)	0.0241 (8)	0.9250 (7)	0.7182 (8)
C(6)	0.0034 (8)	0.8265 (8)	0.6963 (8)
C(7)	0.0759 (7)	0.7580 (6)	0.6173 (8)
C(8)	0.1681 (6)	0.7894 (5)	0.5675 (6)
C(9)	0.1963 (6)	0.8900 (5)	0.5865 (6)
C(10)	0.1198 (7)	0.9574 (6)	0.6665 (7)
C(21)	0.3506 (10)	0.9765 (6)	0.1196 (10)
C(22)	0.3349 (9)	1.0889 (7)	0.1074 (9)
C(41)	0.0274 (8)	0.6439 (8)	0.1410 (9)
C(42)	-0.0963 (8)	0.6118 (7)	0.1304 (9)
C(51)	0.5212 (7)	0.6395 (6)	0.0254 (7)
C(52)	0.4279 (10)	0.6757 (7)	-0.1154 (8)
C(61)	0.6047 (7)	0.6102 (6)	0.5023 (7)
C(62)	0.7448 (10)	0.6183 (7)	0.5486 (9)

(8) and 1,3- $[N_3P_3(OCH_2CF_3)_4\{O_2C_{10}H_6\}]$ (9) were determined by X-ray diffraction and show that a decrease in the "bite angle" of the transannular bridge increases the strain in the phosphazene ring. X-ray diffraction studies of 1,1- $[N_3P_3(OCH_2CF_3)_4$ - $\{O_2C_{12}H_8\}]$ (16) and 1,1- $[N_3P_3(OCH_2CF_3)_4\{O_2C_{10}H_6\}]$ (17) confirmed that a transannular arrangement of the difunctional reagent is necessary to produce a distortion in the phosphorusnitrogen ring.

Experimental Section

Materials. Hexachlorocyclotriphosphazene was provided by Ethyl Corp. It was recrystallized from hexane and sublimed (30 °C, 0.05 mmHg) before use. Diethyl ether and tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl under dry argon before use. Hexane was distilled from CaH₂. 2,2,2-Trifluoroethanol (Halocarbon) and 1,3-propanediol (Aldrich) were distilled from anhydrous BaO and were stored over 4-Å molecular sieves. Biphenol, 1,3-diaminopropane, BuⁿLi (as a 1.6 M solution in hexane), pyridine, sodium, and sodium carbonate were purchased from Aldrich and were used as received. Catechol, 1,8-diaminonaphthalene, and biphenyl (Aldrich) were sublimed before use. Dimethylamine was purchased from Matheson and was dried over sodium before use. Triethylamine (Aldrich) was distilled from CaH2 before use. All manipulations were performed under an atmosphere of dry argon using standard Schlenk line techniques. Column chromatography was carried out on silica gel columns of varying lengths using CH₂Cl₂ and hexane as the eluting solvents. 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂],⁴⁰ (NPF₂)₃,⁵⁴ and 1,8-dihydroxynaphthalene⁵⁵ were prepared by standard

atom	x	у	z
P(1)	0.4184 (1)	0.15155 (4)	0.4954 (1)
P(2)	0.3948 (1)	0.10388 (4)	0.7703 (1)
P(3)	0.4907 (1)	0.07070 (4)	0.4678 (1)
F(31)	0.7176 (4)	0.1070 (2)	0.9768 (8)
F(32)	0.7078 (4)	0.1352 (2)	0.7493 (6)
F(33)	0.2372 (4)	0.3301 (2)	-0.0524 (6)
F(41)	-0.0189 (3)	0.0588 (2)	0.7162 (6)
F(42)	0.0141 (4)	0.1140 (2)	0.8324 (8)
F(43)	0.1328 (4)	0.0984 (2)	0.5947 (5)
F(51)	0.2575 (4)	-0.0188 (2)	0.2791 (5)
F(52)	0.3154 (4)	0.0052 (2)	0.0368 (4)
F(53)	0.2093 (4)	0.0411 (2)	0.2248 (6)
F(61)	-0.1455 (5)	0.0520 (2)	0.1590 (5)
F(62)	-0.1094 (4)	0.0281 (2)	0.3718 (6)
F(63)	-0.0361 (4)	0.0867 (2)	0.3027 (8)
O(1)	0.5247 (3)	0.1862(1)	0.4390 (4)
O(2)	0.2888 (3)	0.16950 (9)	0.4500 (3)
O(3)	0.4671 (3)	0.1089(1)	0.9205 (4)
O(4)	0.2573 (3)	0.0897 (1)	0.8720 (4)
O(5)	0.4086 (3)	0.0372 (1)	0.4011 (4)
O(6)	0.6354 (3)	0.0552 (1)	0.3967 (4)
N(1)	0.3858 (4)	0.1462 (1)	0.6865 (4)
N(2)	0.4553 (4)	0.0675 (1)	0.6606 (5)
N(3)	0.4718 (4)	0.1133 (1)	0.3884 (4)
C(11)	0.4925 (4)	0.2274 (1)	0.4770 (6)
C(12)	0.5499 (5)	0.2465 (2)	0.5934 (7)
C(13)	0.5285 (6)	0.2875 (2)	0.6227 (7)
C(14)	0.4487 (6)	0.3072 (2)	0.5401 (8)
C(15)	0.3904 (6)	0.2888 (2)	0.4231 (7)
C(16)	0.4103 (5)	0.2468 (1)	0.3902 (6)
C(21)	0.2882 (4)	0.1890 (1)	0.2996 (5)
C(22)	0.2208 (5)	0.1700 (2)	0.1924 (6)
C(23)	0.2113 (6)	0.1884 (2)	0.0475 (7)
C(24)	0.2706 (7)	0.2261 (2)	0.0114 (7)
C(25)	0.3373 (6)	0.2455 (2)	0.1198 (7)
C(26)	0.3471 (5)	0.2273 (2)	0.2696 (6)
C(31)	0.5278 (5)	0.1437 (2)	0.9611 (6)
C(32)	0.6727 (6)	0.1393 (2)	0.9092 (8)
C(41)	0.1707 (5)	0.0624 (2)	0.8211 (7)
C(42)	0.0690 (6)	0.0846 (2)	0.7472 (9)
C(51)	0.4298 (5)	0.0270 (2)	0.2292 (6)
C(52)	0.3005 (5)	0.0138 (2)	0.1971 (6)
C(61)	0.7435 (5)	0.0806 (2)	0.4062 (8)
C(62)	-0.1400 (6)	0.0642 (2)	0.3059 (9)

literature procedures. Compound 6, 1,3-[N_3P_3(OCH_2CF_3)_4Cl_2], was prepared by a method described earlier.⁴⁰

Caution! We emphasize that deamination reactions of the type used to prepare 6 should be carried out only by experienced investigators using adequate shielding to guard against a pressure explosion if the HCl pressure within the sealed tube exceeds a safe level.

Equipment. ³¹P (36.2 MHz) NMR spectra were recorded using a JEOL FX 90Q NMR spectrometer. High-field ³¹P (146 MHz), ¹³C (90 MHz), and 'H (360 MHz) NMR spectra were obtained by use of a Bruker WM 360 NMR spectrometer. Both ³¹P and ¹³C NMR spectra were proton decoupled unless otherwise specified. ³¹P NMR spectra were referenced relative to external 85% H₃PO₄, with positive shifts recorded downfield from the reference. ¹H and ¹³C NMR spectra were referenced relative to external tetramethylsilane. Vapor phase chromatography was carried out by means of a Varian 3700 unit with a flame ionization detector. A Supelco OV-101 column with injector and detector temperatures set at 350 °C was used. An initial temperature of 100 °C and a heating rate of 10 °C/min to a maximum temperature of 350 °C were employed. Typical sample sizes varied between 1 and 3 µL in CH2-Cl₂. Retention times were in the range of 10-20 min. Reactions were routinely followed by ³¹P NMR spectroscopy, thin layer chromatography, and VPC-MS. Elemental analyses were obtained by Galbraith Laboratories, Knoxville, TN.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with Catechol. Compound 6 (5 g, 8.31 mmol) and triethylamine (20 mL, 7 mmol) were dissolved in 500 mL of dry THF. Catechol (1.5 g, 13.6 mmol) was added, and the reaction mixture was heated at reflux for 40 h, followed by cooling to room temperature. The solvent was removed at reduced pressure, and the resulting oil was dissolved in diethyl ether (200 mL). A white

⁽⁵⁵⁾ Parker, K. A.; Iqbal, T. J. Org. Chem. 1980, 45, 1149.

Cyclotriphosphazenes

 Table XIII. Atomic Positional Parameters for 17 with Esd's in Parentheses

atom	x	У	Z
P (1)	0.2157 (1)	0.3565 (0)	0.2079 (1)
P(2)	0.0682 (1)	0.2293 (2)	0.0344 (1)
P(3)	0.2292 (1)	0.0645 (2)	0.1796 (1)
F(31)	-0.0757 (4)	0.2291 (8)	0.2259 (4)
F(32)	-0.2557 (5)	0.1405 (6)	0.1871 (4)
F(33)	-0.2155 (5)	0.3434 (6)	0.1234 (5)
F(41)	0.1031 (5)	0.0954 (6)	-0.3154 (4)
F(42)	0.1536 (5)	0.3113 (6)	-0.2633 (4)
F(43)	0.2497 (4)	0.1335 (6)	-0.1796 (4)
F(51)	0.5630 (5)	-0.0353 (7)	0.0090 (5)
F(52)	0.4523 (5)	-0.2102 (6)	0.0470 (5)
F(53)	0.5768 (4)	-0.1043 (6)	0.1690 (5)
F(61)	0.0828 (6)	-0.1472 (9)	0.4129 (5)
F(62)	0.1259 (7)	0.0773 (8)	0.4311 (6)
F(63)	0.2305 (6)	-0.0769 (7)	0.5317 (4)
O(1)	0.1566 (4)	0.4125 (5)	0.2988 (3)
O(2)	0.3162 (4)	0.4769 (5)	0.2011 (3)
O(3)	-0.0777 (3)	0.2180 (5)	0.0068 (3)
O(4)	0.0910 (4)	0.2654 (5)	-0.0773 (3)
O(5)	0.3395 (4)	-0.0267 (5)	0.1562 (4)
O(6)	0.1831 (4)	-0.0423 (5)	0.2558 (3)
N(1)	0.1133 (5)	0.3676 (5)	0.1030 (4)
N(2)	0.1245 (5)	0.0776 (5)	0.0770 (4)
N(3)	0.2811 (4)	0.2063 (6)	0.2386 (4)
C(1)	0.2309 (6)	0.4701 (7)	0.3911 (5)
C(2)	0.1880 (7)	0.4631 (8)	0.4820 (6)
C(3)	0.2570 (8)	0.5259 (8)	0.5753 (6)
C(4)	0.3633 (8)	0.5928 (8)	0.5710 (5)
C(5)	0.5218 (7)	0.6750 (7)	0.4704 (6)
C(6)	0.5604 (7)	0.6761 (8)	0.3780 (7)
C(7)	0.4936 (6)	0.6046 (7)	0.2833 (6)
C(8)	0.3856 (5)	0.5394 (6)	0.2951 (5)
C(9)	0.3420 (5)	0.5361 (6)	0.3858 (4)
C(10)	0.4120 (6)	0.6008 (7)	0.4773 (5)
C(31)	-0.1455 (6)	0.1295 (7)	0.0592 (5)
C(32)	-0.1719 (6)	0.2107 (8)	0.1492 (5)
C(41)	0.0461 (5)	0.1697 (7)	-0.1634 (4)
C(42)	0.1384 (7)	0.1775 (8)	-0.2300 (5)
C(51)	0.4048 (6)	0.0300 (7)	0.0854 (5)
C(52)	0.4997 (6)	-0.0836 (8)	0.0769 (6)
C(61)	0.2561 (6)	-0.0658 (7)	0.3601 (5)
C(62)	0.1732 (8)	-0.0538 (9)	0.4322 (6)

precipitate was isolated by filtration and was washed with $3 \times 100 \text{ mL}$ of deionized water. This was found to be $[P(O_2C_6H_4)_3][Et_3NHCl]$ (15) (1.2 g, 29%) by comparison with an authentic sample. The soluble portion was subjected to column chromatography, and $1,3-[N_3P_3(OCH_2CF_3)_4-\{O_2C_6H_4\}]$ (7) (2.35 g, 44%) was eluted with dichloromethane. This compound is a colorless liquid.

Reaction of 1,3- $[N_3P_3(OCH_2CF_3)_4Cl_2]$ (6) with Biphenol. In a 1-L round-bottomed flask was placed 6 (5.0 g, 8.31 mmol), triethylamine (4.6 mL, 32 mmol), and 500 mL of dry THF. A solution of biphenol (3.1 g, 16.7 mmol) in THF (30 mL) was added dropwise to the above solution over a period of 5 min. The resulting reaction mixture was heated at reflux for 17 h, allowed to cool, and then filtered through a glass frit to remove any triethylamine hydrochloride. The solvent was removed at reduced pressure, the resultant white solid was extracted with dichloromethane (5 mL), and the solution was chromatographed. The first band eluted with 1:5 dichloromethane/hexane gave 2.76 g (46%) of 1,3- $[N_3P_3(OCH_2CF_3)_4(O_2C_12H_8)]$ (8) as white crystals after recrystal-lization from dichloromethane/hexane. A second band eluted with 1:1 dichloromethane/hexane gave 2.70 g (43%) of $[N_3P_3(OCH_2CF_3)_4(OCL_12H_8OH)Cl]$ (13) as white crystals.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with 1,8-Dihydroxynaphthalene. In a 500-mL round-bottomed flask was placed 6 (5.0 g, 8.31 mmol), triethylamine (10 mL, 70 mmol), and 300 mL of dry THF. A solution of 1,8-dihydroxynaphthalene (1.5 g, 9.4 mmol) in THF (5 mL) was added dropwise to the above solution over a period of 5 min. The resultant reaction mixture was heated at reflux for 17 h and then filtered through silica gel to remove the triethylamine hydrochloride. The solvent was removed at reduced pressure, and the resultant white solid was extracted with dichloromethane (5 mL) and chromatographed. The first band eluted with 1:9 dichloromethane/hexane gave 1.0 g (17%) of [N₃P₃(OCH₂CF₃)₄(OC₁₀H₆OH)Cl] (14) as a colorless oil. A second band, eluted with 1:5 dichloromethane/hexane, gave 2.82 g (49%) of 1,3- $[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (9) as white crystals when recrystallized from hexane at 0 °C.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with 1,8-Diaminonaphthalene. Compound 6 (1 g, 1.65 mmol) and triethylamine (0.5 mL, 3.5 mmol) were dissolved in 150 mL of dry THF. 1,8-Diaminonaphthalene (0.53 g, 3.4 mmol) was added dropwise from an addition funnel as a solution in THF (50 mL). The reaction was heated at reflux for 1 week and was then cooled to room temperature. After removal of the solvent at reduced pressure, the resultant red oil was subjected to chromatography. 1,3-[N₃P₃(OCH₂CF₃)₄([NH)₂C₁₀H₆]] (10) (0.41 g, 36%) was eluted with dichloromethane and was recrystallized from dichloromethane/hexane to give colorless crystals.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with 1,3-Diaminopropane. To a 200-mL Schlenk flask was added 6 (3 g, 4.95 mmol) and 100 mL of dry THF. 1,3-Diaminopropane (1 g, 13 mmol) was added dropwise from a syringe, and an immediate white precipitate was formed. The solution was stirred for 2 h and was then filtered to remove the amine hydrochloride salt. The THF was removed at reduced pressure to leave a colorless oil, which was chromatographed with dichloromethane (10 mL). 1,3-[N₃P₃(OCH₂CF₃)₄{NH(CH₂)₃NH}] (11) (0.8 g, 26%) was obtained after elution with 1:4 diethyl ether/hexane. It was isolated as a white microcrystalline powder.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with 1,3-Propanediol. To a 500-mL 3-necked round-bottomed flask was added 6 (1 g, 1.65 mmol), pyridine (0.5 g, 6.6 mmol), and 350 mL of dry THF. 1,3-Propanediol (0.26 g, 3.4 mmol) was added dropwise from a syringe, and the reaction was heated at reflux for 3 days. The resulting solution was filtered, and the solvent was removed at reduced pressure. The brown oil obtained was dissolved in dichloromethane (1 mL) and was chromatographed. 1,3-[N₃P₃(OCH₂CF₃)₄[O(CH₂)₃O]] (12) (0.18 g) eluted with dichloromethane and was isolated in 18% yield as a colorless liquid.

Reaction of 1,3-[N₃P₃(OCH₂CF₃)₄Cl₂] (6) with the Disodium Salt of 1,3-Propanediol. 1,3-Propanediol (0.25 mL, 3.5 mmol) was added dropwise to a suspension of sodium hydride (0.2 g, 8.3 mmol) in 50 mL of dry THF. Hydrogen gas was evolved as a white precipitate formed. After the mixture had been stirred for 1 h, 6 (1.0 g, 1.65 mmol) was added as a solution in 10 mL of dry THF. A slight bleaching of the solution was observed. After 2 h, complete consumption of the starting material had occurred. The reaction mixture was filtered through silica gel, and the solvent was removed at reduced pressure. Two fractions were isolated by column chromatography. The first, eluted with 4:1 dichloromethane/hexane, yielded 0.33 g (33%) of a mixture of 1,1- and 1,3-[N₃P₃(OCH₂-CF₃)₄{O(CH₂)₃O}] (12 and 20) as a colorless liquid. The second, eluted with dichloromethane, was found to be 1,1-[N₃P₃(OCH₂CF₃)₂-{O(CH₂)₃O}₂] (21) (0.33 g, 41%). It was recrystallized from dichloromethane/hexane to give colorless crystals.

Similar procedures were used for the preparation of the spirocyclic phosphazenes, $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ (16), $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (17), $1,1-[N_3P_3(OCH_2CF_3)_4\{(NH)_2C_{10}H_6\}]$ (18), $1,1-[N_3P_3(OCH_2CF_3)_4\{NH(CH_2)_3NH\}]$ (19), and $1,1-[N_3P_3(OCH_2CF_3)_4\{O(CH_2)_3NH\}]$ (19), and $1,1-[N_3P_3(OCH_2CF_3)_4\{O(CH_2)_3NH\}]$ (19), and $1,1-[N_3P_3(OCH_2CF_3)_4]$ (0(CH₂)₃O}] (20), and a representative example is shown below for compound 16.

Preparation of $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)](16)$. In a 1-L roundbottomed flask was placed (NPCl₂)₃ (20 g, 57 mmol), triethylamine (20 mL, 0.14 mol), and 500 mL of dry THF. A solution of biphenol (10.7 g, 57 mmol) in THF (150 mL) was added dropwise over a period of 3 h. The immediate formation of a white precipitate occurred. After a further 1 h of reaction at room temperature, the stirring was discontinued and the triethylamine hydrochloride salts were allowed to settle. The colorless solution was transferred to a fritted addition funnel, and the salts were washed with 100 mL of dry THF. This solution was then added dropwise to an excess of sodium trifluoroethoxide, prepared from 10.1 g (0.25 mol) of 60% sodium hydride dispersed in mineral oil and trifluoroethanol (18.4 mL, 0.25 mol). Heating at 40 °C for 17 h produced a white precipitate of sodium chloride. This was removed by filtration through silica gel at room temperature followed by washing with 2×50 mL of THF. The solvent was then removed, and the remaining colorless oil was redissolved in diethyl ether (300 mL), washed with 3×300 mL of deionized water, and dried with anhydrous magnesium sulfate. 1,1- $[N_3P_3(OCH_2CF_3)_4(O_2C_{12}H_8)]$ (16) was isolated as a microcrystalline solid (39.1 g, 95%) by removal of the solvent and drying under vacuum (10 µmHg) for 24 h. This solid was recrystallized from dichloromethane/ hexane to give colorless crystals.

Preparation of 1,1-[N₃P₃(OCH₂CF₃)₄(O₂C₁₀H₆)] (17). (NPCl₂)₃ (3 g, 8.6 mmol), triethylamine (10 mL, 70 mmol), and 1,8-dihydroxynaphthalene (1.4 g, 8.8 mmol) were allowed to react as described in the previous example, and the mixture was added to a solution of sodium trifluoroethoxide (43 mmol) in 300 mL of THF. Recrystallization from dichloromethane/hexane gave $1,1-[N_3P_3(OCH_2CF_3)_4(O_2C_{10}H_6)]$ (17) in 55% yield (3.2 g) as colorless crystals.

Preparation of 1,1-[N₃P₃(OCH₂CF₃)₄{(NH)₂C₁₀H₆](18). (NPCl₂)₃ (5 g, 14.3 mmol), triethylamine (10 mL, 70 mmol), and 1,8-diaminonaphthalene (2.3 g, 14.6 mmol) were allowed to interact using the procedure described above, and the mixture was added to a solution of sodium trifluoroethoxide (63 mmol) in 300 mL of THF. 1,1-[N₃P₃(OCH₂-CF₃)₄{(NH)₂C₁₀H₆] (18) was isolated by recrystallization from dichloromethane/hexane to give 7.1 g of colorless crystals (71%).

Preparation of 1,1-[N₃P₃(OCH₂CF₃)₄[NH(CH₂)₃NH]] (19). (NPCl₂)₃ (5 g, 14.3 mmol) and 1,3-diaminopropane (2.1 g, 28 mmol) were allowed to react in THF as described above, and the mixture was added to a solution of sodium trifluoroethoxide (63 mmol) in 350 mL of THF. After removal of the solvent the colorless oil was dissolved in diethyl ether (300 mL), washed with 3×300 mL of deionized water, and dried with anhydrous magnesium sulfate. Precipitation from hexane gave 8.1 g (94%) of 1,1-[N₃P₃(OCH₂CF₃)₄{NH(CH₂)₃NH}] (19) as a colorless oil.

Preparation of 1,1-[N₃P₃(OCH₂CF₃)₄{O(CH₂)₃O}] (20). (NPCl₂)₃ (10 g, 29 mmol), triethylamine (9 mL, 63 mmol), and 1,3-propanediol (2.1 mL, 29 mmol) were allowed to react as described above, and the solution was added to a solution of sodium trifluoroethoxide (0.14 mol) in 350 mL of THF. Column chromatography and elution with 1:1 dichloromethane/hexane gave 7.7 g (45%) of 1,1-[N₃P₃(OCH₂CF₃)₄-{O(CH₂)₃O}] (20) as a colorless oil.

Preparation of 1,1-[N3P3(OCH2CF3)4(C12H8)] (22). 2,2'-Dilithiobiphenyl was prepared by the direct lithiation of biphenyl (1.3 g, 9 mmol) with BunLi (10.5 mL of a 1.6 M solution in hexane) in the presence of tetramethylethylenediamine (3 mL, 36 mmol), as described in the literature.45 The dilithium reagent was then added to a THF solution of (NPF₂)₃ (2.1 g, 8.4 mmol), and the mixture was stirred at room temperature for 30 min. The solvent and any unreacted (NPF₂)₃ were removed under vacuum, and the resultant red solid was dissolved in 30 mL of dry THF. To this solution was added sodium trifluoroethoxide, prepared from sodium hydride (0.8 g of a 60% dispersion in mineral oil) and trifluoroethanol (2.5 mL, 34 mmol) in 30 mL of dry THF. After 30 min of reaction the solvent was removed and the reaction mixture was subjected to chromatography. Two fractions were removed with 1:4 dichloromethane/hexane. The first was isolated as a colorless oil and was found to be $N_3P_3(OCH_2CF_3)_5(C_{12}H_9)$ (23), and the second gave colorless crystals (0.6 g, 11%) from dichloromethane/hexane and was characterized as $1,1-[N_3P_3(OCH_2CF_3)_4(C_{12}H_8)]$ (22).

Crystal Structure Determinations. Data were collected using an Enraf-Nonius CAD4 diffractometer (293 K, Mo K α X-radiation, graphite monochromator, $\lambda = 0.710$ 73 Å) by a least-squares refinement of the setting angles of 25 reflections with θ in the range 10–15°. Intensity data were collected by the $\omega/2\theta$ scan method in the range of $2 < \theta < 25$, with ω scan width = 1.00 + 0.35 tan θ . The intensities of three reflections, chosen as standards, were monitored at regular intervals over the course of the data collection; any decay was corrected for by appropriate scaling. Data were corrected for Lorentz and polarization factors and for empirical absorption.

The structures were solved by direct methods.⁵⁶ Refinement of the structure was by full-matrix least-squares calculations, initially with

isotropic and finally with anisotropic temperature factors for the nonhydrogen atoms, and with hydrogens in calculated positions. Programs and computers used in this study are described in ref 57. Additional refinements for the structures of 9 and 17 were performed using the SHELX 76 refinement package.

Crystals of 8 were grown from dichloromethane/hexane as clear, colorless prisms. Of the 5386 reflections measured, 5001 were unique with $I > 3\sigma(I)$ [merging R = 0.013 after absorption correction (max, min transmission factors = 0.9996, 0.9744)].

Crystal Data: $C_{20}H_{16}F_{12}N_3O_6P_3$, $M_r = 715$, triclinic, space group $P\overline{I}$, a = 11.369 (2) Å, b = 11.433 (4) Å, c = 12.832 (3) Å, $\alpha = 68.88$ (2)°, $\beta = 72.02$ (1)°, $\gamma = 78.91$ (2)°, U = 1421.91 Å³, Z = 2, $D_c = 1.671$ g cm⁻³, F(000) = 716. Crystal decay was less than 2% of total. Refinement converged with R = 0.073 and $R_w = (\sum \Delta^2 / \sum w F_o^2)^{1/2} = 0.075$. A difference map calculated at the conclusion of the refinement had no chemically significant features.

Crystals of 9 were grown from toluene/dodecanol as clear, colorless prisms. Of the 6018 reflections measured, 3427 were unique with $I > 3\sigma(I)$ [merging R = 0.033 after absorption correction (max, min transmission factors = 0.9076, 0.9985)].

Crystal Data: $C_{18}H_{14}F_{12}N_3O_6P_3$, $M_r = 689$, triclinic, space group $P\overline{1}$, a = 10.589 (4) Å, b = 14.57 (2) Å, c = 9.11 (1) Å, $\alpha = 97.3$ (1)°, $\beta = 108.61$ (5)°, $\gamma = 96.72$ (8)°, U = 1303 Å³, Z = 2, $D_c = 1.699$ g cm⁻³, F(000) = 688. Crystal decay was less than 0.1% of total. Refinement converged with R = 0.080 and $R_w = (\sum \Delta^2 / \sum w F_o^2)^{1/2} = 0.080$. A difference map calculated at the conclusion of the refinement had no chemically significant features.

Crystals of 16 were grown from dichloromethane/hexane as clear, colorless prisms. Of the 5734 data collected, 5056 were unique and 3537 had $I > 3\sigma(I)$ [merging R = 0.043 after absorption correction (max, min transmission factors = 0.9994, 0.9816)].

Crystal Data: $C_{20}H_{16}F_{12}N_3O_6P_3$, $M_r = 715$, monoclinic, space group $P2_1/a$, a = 10.3945 (2) Å, b = 33.0018 (8) Å, c = 8.3549 (2) Å, $\beta = 79.13$ (2)°, U = 2814.7 Å³, Z = 4, $D_c = 1.689$ g cm⁻³, F(000) = 1432. Crystal decay was less than 4% of total. Refinement converged with R = 0.065 and $R_w = (\sum \Delta^2 / \sum wF_o^2)^{1/2} = 0.105$. A difference map calculated at the conclusion of the refinement had no chemically significant features.

Crystals of 17 were grown from dichloromethane/hexane as clear, colorless prisms. Of the 4252 reflections measured, 3637 were unique with $I > 3\sigma(I)$ [merging R = 0.215 after absorption correction (max, min transmission factors = 0.3185, 0.9984)].

Crystal Data: $C_{18}H_{14}F_{12}N_3O_6P_3$, $M_r = 689$, monoclinic, space group $P2_1$, a = 11.23 (1) Å, b = 9.29 (3) Å, c = 13.08 (2) Å, $\beta = 103.57$ (9)°, U = 1326 Å³, Z = 2, $D_c = 1.725$ g cm⁻³, F(000) = 688. Crystal decay was less than 0.5% of total. Refinement converged with R = 0.053 and $R_w = (\sum \Delta^2 / \sum wF_o^2)^{1/2} = 0.053$. A difference map calculated at the conclusion of the refinement had no chemically significant features.

Acknowledgment. We thank the Dow Chemical Co. for the support of this work.

Supplementary Material Available: Listings of bond distances and angles and general displacement parameters and ORTEP diagrams (17 pages). Ordering information is given on any current masthead page.

⁽⁵⁶⁾ MULTAN 82.

⁽⁵⁷⁾ The computer programs used were part of the Enraf-Nonius Structures Determination Package (SDP Plus, Version 1.0), Enraf Nonius, Delft, Holland, 1982, implemented on a PDP 11/34 computer.